Rapid gravitational wave parameter estimation with a single spin: Systematic uncertainties in parameter estimation with the SpinTaylorF2 approximation
نویسندگان
چکیده
منابع مشابه
Gravitational wave parameter estimation with compressed likelihood evaluations
Priscilla Canizares, Scott E. Field, Jonathan R. Gair, and Manuel Tiglio 4 Institute of Astronomy, Madingley Road, Cambridge, CB30HA, United Kingdom Department of Physics, Joint Space Sciences Institute, Maryland Center for Fundamental Physics. University of Maryland, College Park, MD 20742, USA Center for Scientific Computation and Mathematical Modeling, Department of Physics, Joint Space Scie...
متن کاملAccelerated gravitational wave parameter estimation with reduced order modeling.
Inferring the astrophysical parameters of coalescing compact binaries is a key science goal of the upcoming advanced LIGO-Virgo gravitational-wave detector network and, more generally, gravitational-wave astronomy. However, current approaches to parameter estimation for these detectors require computationally expensive algorithms. Therefore, there is a pressing need for new, fast, and accurate ...
متن کاملParameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation
Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...
متن کاملSpin-bath narrowing with adaptive parameter estimation
We present a measurement scheme capable of achieving the quantum limit of parameter estimation using an adaptive strategy that minimizes the parameter’s variance at each step. The adaptive rule we propose makes the scheme robust against errors, in particular imperfect readouts, a critical requirement to extend adaptive schemes from quantum optics to solid-state sensors. Thanks to recent advance...
متن کاملParameter Estimation Under Model Uncertainties by Iterative Covariance Approximation
We propose a novel iterative algorithm for estimating a de-terministic but unknown parameter vector in the presence of Gaussian model uncertainties. This iterative algorithm is based on a system model where an overall noise term describes both, the measurement noise and the noise resulting from the model uncertainties. This overall noise term is a function of the true parameter vector. The prop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review D
سال: 2015
ISSN: 1550-7998,1550-2368
DOI: 10.1103/physrevd.92.044056